
Don’t give up on mocking

- Why do people give up?

- Mocking: the big step from classic way of testing

- Let’s take a step back and don’t give up!

by Szczepan Faber (a certified mock tamer)

Interaction testing...

� State testing is asking: „what’s your
colour, Mr Object?”

� Interaction testing is asking: „Mrs
Object, what did you say to Mr
Object?”

The language

� The natural language of state
testing are assertions

� The natural language of interaction
testing is... mocking?

What’s a mock or a stub?

� It is a substitue of the real thing for
the purposes of testing

Mocking...

� Is it a design tool for describing
messaging patterns between
abstract state machines?

� Is it a handy tool which lets me
create mocks dynamically?

Giving up...

� The internet says mocking is cool

� Let’s find out why one would give
up on mocking!

Why would one give up on mocking?

Why would one give up on mocking?

� because aggressive validation makes the
tests brittle �

The code

The test

And the lovely green bar

TDD-ing a new feature (test)

The adorable red bar

TDD-ing a new feature (code)

Whoah? Red bar again?

Why would one give up on mocking?

� because I have to fix tests even
when the code is not broken:

� may increase noise

� may lead to overspecification

Fixing by ignoring interactions

Fixing by adding required expectation

Why would one give up on mocking?

� What if hand mocks were better?

Remember the code?

Let’s try some hand written mocks

By hand or with the framework: the essence

By hand or with the framework: expectations

Complete test

Why would one give up on mocking?

� Let’s look at the point of failure

Point of failure and hand mocks

Hand mocks show useful stack trace
pointing to exact line of code

When the framework fails on verify()

The exception message which tries to be
readable.

When the framework fails with

„Unexpected Interaction!”

Helpful but...

Ok, now I understand why one would

give up on mocking.

� because aggressive validation makes the
tests brittle �

� because I have to fix tests even when the
code is not broken

� but it can increase noise

� or lead to overspecification

� because hand-mocks can be considered
better:

� less noisy

� more natural

� with better(?) point of failure

Are hand mocks a better option, then?

� Err... not really... hand mocks have
different issues.

� Hand mocks bad, mocking framework bad
what should I do now?

A taste of Mockito, a Test Spy framework

A taste of hand mocks, no framework at all

Test Spy framework

� because aggressive validation makes the
tests brittle �

� because I have to fix tests even when the
code is not broken

� but it can increase noise

� or lead to overspecification

� because hand-mocks can be considered
better:

� less noisy

� more natural

� with better(?) point of failure

Languages, where are your Test Spy

frameworks?

� You’ve got plenty of mocking frameworks

� Java

� C#

� Ruby

� Python

� JavaScript

� But you’ve got so little Test Spy frameworks
� Java

� C#

� Ruby

� Python

� JavaScript

This is what is trendy in the mocking

world these days

� Better and better DSLs for describing
expectations

� Partial mocking

� Mocking static methods

� Features that solve rare corner cases

� Etc.

Mock objects: the quest for quality

� Does application code quality vary when
using different mock libraries (or hand
mocks)?

� Does test code quality vary when using
different mock libraries (or hand mocks)?

� Can I use different mock libraries in single
project?

Mocking in Java

� jMock

� EasyMock

� Mockito

How to verify the method was called?

JMock:

EasyMock:

Mockito:

How to tell a method to return a value?

JMock:

EasyMock:

Mockito:

How verify the method was not called

JMock:

EasyMock:

(always implicit)

Mockito:

Mockito separates stubbing from

verification

Classic mocking doesn’t separate

stubbing from verification

JMock:

EasyMock:

Mockito knows developers read stack trace

Mockito knows developers read stack trace

Mockito is a Test Spy framework

run()

verifyThis()

verifyThat()

Spying

run()

assertThis()

assertThat()

expectThis()

expectThat()

run()

verify()

Classic testingClassic mocking

Mockito and classic testing are explicit

strict style requires explicit
specification:

assertNotTrue(something);
verify(mock, never()).method();

loose style requires explicit
specification:

ignoreInteractions(mock);

loose by defaultstrict by default

Classic testing and MockitoClassic mocking

The current era in my project is Mockitozoic!

� jMockozoic ->

� EasyMockozoic ->

� HandMockozoic ->

� Mockitozoic

What’s next?

� jMockozoic ->

� EasyMockozoic ->

� HandMockozoic ->

� Mockitozoic ->

� ?

What I don’t like about Mockito

� a bit inconsistent API:
� verify(mock).method();

� stub(mock.method()).toReturn(x);

� stubbing voids is different:
� doThrow(ex).when(mock).method();

� may lead to overmocking because
it’s too easy to mock ☺

What users like about Mockito?

� explicit API

� flexible verification

� separation of stubbing and verification

� @Mock annotation

� expectations after exercising

What are the plans for Mockito:

� maintain slip API to promote simple code

� change the stubbing api:
� instead: stub(mock.getStuff()).toReturn(x);

� do: when(mock.getStuff()).thenReturn(x);

� spread to other languages (python, c++,
C#)

Regards

� jMock guys for inventing mock objects

� EasyMock guys for their innovative syntax

� Gerard Maszeros for sorting out mocking
terminology

� Mockito users and contributors for their
ideas

